
www.manaraa.com

Video Indexing Based on Scene Features

By

Mazen Ghazi Alwadi

Advisor:

Dr. Mohammad Al-Jarrah

Co-Advisor

Dr. Abdel-Karim Al-Tamimi

Program: Master of Science in Computer Engineering/

Industrial Automation

www.manaraa.com

II

Declaration

www.manaraa.com

III

www.manaraa.com

IV

Dedication

This thesis is dedicated to everyone who helped me to finish this, especially my family.

www.manaraa.com

V

Acknowledgments

First of all, I would like to thank my advisors Dr. Mohammad Al-Jarrah and Dr. Abdel-

Karim Al-Tamimi, for their endless support and great patience.

I would like also to take this opportunity to express my gratitude to all who gave me the

possibility to complete this thesis and present it in this form.

I would like to express my love and gratitude to my beloved family for their understanding

and endless love throughout the duration of my studies. Special thanks to my loving

parents, who always inspired and guided me throughout my life.

www.manaraa.com

VI

Table of Contents

ABSTRACT

CHAPTER 1
INTRODUCTION .. 1

1.1 Introduction ...1
1.2 Motivation ...3
1.3 Contributions...3

1.4 The objectives of the study ...4
CHAPTER 2

BACKGROUND AND LITERATURE REVIEW 5
2.1 Introduction ...5
2.2 Frameworks and tools ...5

2.3 KAZE ..6
2.4 Locality sensitivity hashing ..7

2.5 Literature review ...9
CHAPTER 3
METHODOLOGY.. 22

3.1 Introduction ...22
3.2 Frames extraction ..23

3.3 Features finder...24
3.4 Locality sensitivity hashing ..25

CHAPTER 4

IMPLEMENTATION ... 27
4.1 Implementation ..27

CHAPTER 5
EXPERIMENTAL RESULTS AND DISCUSSION 33

5.1 Introduction ...33

5.2 Single frame hash experiments ...33
5.3 Four-frame hash experiments..35

5.4 Single frame Vs Four-frame ...36
CHAPTER 6
CONCLUSIONS AND FUTURE WORK 38

6.1 Conclusions ...38
6.2 Future work ...38

www.manaraa.com

VII

List of Figures

Figure 1: Video hierarchical structure and keyframe extraction, retrieved from [72] 7

Figure 2: Presented methodology flowchart ...21
Figure 3: Examples of partial duplicate images [6]. ...26

Figure 4: Frame extraction application ...30
Figure 5: Sample video frames, results of the frames extraction process.31
Figure 6: Features extraction application..32

Figure 7: Features extractor file menu options ...32
Figure 8: A feature list of keypoints and their structure ...34

Figure 9: Keypoint structure and detected features for each keypoint34

www.manaraa.com

VIII

List of Tables

Table 1: Selected concepts numbers and their associated objects.20

Table 2: Top 10 results, single frame queries for a video from the database. 38
Table 3: Top 10 results, single frame queries for a video belongs to the same concept but

not hashed in the database...38
Table 4: Top 10 results, four- frames queries for a video hashed in the database. 39
Table 5: Top 10 results, four frames queries for a video belongs to a concept but not in the

database ...40
Table 6: Single frame VS four-frames KAZE, queries from the database. 40

Table 7: Single frame VS four-frames KAZE, same concept queries but not in the database.
...41

www.manaraa.com

IX

Abbreviations

AOS Additive Operator Splitting

Brief Vector of image features

DB Database

FAST Vector of image features

FTP File transfer protocol

KAZE Vector of image features

KB Kilobytes

LSH Locality sensitive hashing

MySQL Open source database management system

ORB Vector of image features

SIFT Vector of image features

SURF Vector of image features

TB Terabytes

TRECVID evaluation meetings focusing on a list of different information retrieval

research areas in content-based retrieval

x32 32-bit build operating systems

x64 64-bit build operating systems

www.manaraa.com

X

ABSTRACT
Video Indexing Based on Scene Features

Mazen Alwadi, Master of science in Computer Engineering/Industrial Automation

Systems, Department of Computer Engineering, Yarmouk University, 2017.

(Supervisor: Dr. Mohammed Al-Jarrah. Co-Advisor: Dr. Abdel-Karim Al-Tamimi).

The explosive increase of multimedia contents due to the recent technological advances that

enabled the wide usage of mobile content creating devices and the presence of ubiquitous

supporting infrastructures represented by broadband Internet and social networks, has

emphasized the need for effective and automatic video indexing and retrieval systems.

 In this thesis, we present a video indexing system based on the extracted video scene

features using KAZE features descriptor. Scene features are the distinguishable

characteristics of a video scene based on its visual attributes. To increase the efficiency of

the mechanism of indexing and retrieving videos based on their extracted features, we use

locality sensitive hashing (LSH) approach to condense scene features into manageable data

pieces that can be used to identify video scenes. We represent each video of our 900 videos

dataset with two feature sets. The first set represent each second with a single frame (i.e.

the first frame), and the second set represent each second with four evenly spaced frames.

We test our proposed systems by querying video scenes from videos that were previously

indexed , in addition to new ones. Our testing results show the effectiveness and the

accuracy of our approach as we managed to always retrieve the desired stored video among

the top two results, and retrieved similar videos that belong to the same or related concepts

in the rest of our top ten results. Similar outcomes were achieved when querying new

videos, as our system managed to retrieve videos from the exact or related video concepts

in the top two results.

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

In the recent years, we have witnessed a huge demand on multimedia over the Internet,

which in its turn led to an increase of audiovisual databases. This huge amount of

multimedia data represents one of the main challenging researches in the field of automatic

information processing particularly in the field of video indexing. Database professionals

work to index their video contents in their video databases to ensure the effective use of the

video data [1].

The most common technique for multimedia retrieval is the text-based approach [2], where

the file is retrieved based on predefined keywords or tags. The problem in this approach is

the insufficient descriptions of the video based on the assigned keywords or tags.

Videos have much richer content than individual images, huge amount of raw data and very

little prior structure which makes it very difficult to index and retrieve videos [3]. In the

past, video databases have been relatively small, where indexing and retrieval have been

based on keywords assigned manually. With the dramatic growth of these databases,

content-based video indexing and retrieval are required, based on the video analysis with

minimum human participation. Generally, videos are structured according to a descending

hierarchy of clips, scenes and frames. Video analysis aims to segment videos into simpler

elements that hold a semantic content which can be used to accurately index the videos [4].

Another common technique is the feature based approach [2], where each video is assigned

a tag, and a description vector based on low level features such as color, texture, shape...etc.

www.manaraa.com

2

These features are complex to extract and they describe the video content although they are

not intelligible to ordinary users.

Video data exhibit strong consistency along their temporal domain, which implies the scene

is visually smooth and semantically coherent. This also implies that the relevant shots tend

to gather in temporal neighborhoods or even appear next to each other consecutively.

However, temporal consistency provides valuable contextual clues to video analysis and

tasks retrieval. In most existing approaches, the relevance of a given shot is based on its

content independently from the neighboring shots [17].

In this thesis, we extracted four frames per second from each video, and then we calculated

the KAZE features for these frames [7]. Then we used Locality Sensitive Hashing (LSH) to

produce a similarity hash values to group similar scenes, finally we used the Jaccard

distance as a similarity measure for retrieval purposes [12].

The basic ideas behind LSH are to standardize and reduce data dimensionality. In our case,

the number of detected features varies from one frame to another and varies from 30 to 50

keypoint per frame. LSH uses min-hash algorithm to classify and assign hashes into

buckets where similar hashes will be assigned to the same bucket, then at query time,

hashes to an existing bucket points to the nearest hashes [12]. Min-hashing converts the

features vector into a single hash key vector by applying a predefined number of hash

functions to each value in the features vector and store them in the hash key vector. Then

the same functions will be applied to the next value, in the features vector and the result

will be compared with the previous vector and the minimum value will be stored in the

hash key vector [6].

KAZE is a novel method used for features detection and description in nonlinear scale

spaces. KAZE detects scene features and represents them as a set of keypoints. The

www.manaraa.com

3

keypoints consists of six components which are the coordinates of each keypoint with their

sub-pixel accuracy, angle, class ID, octave, response, and size. To detect these features,

KAZE uses Additive Operator Splitting (AOS) and first order image derivatives. [7]

On receiving a query, a similarity measure method is used to search for the candidate

videos in accordance with the query. Video similarity measure plays an important role in

video retrieval. Feature matching is the most direct measure of similarity between two

videos which is the distance between the features of the corresponding videos. [4]

1.2 Motivation

As mentioned before the increasing amount of publicly available media content make it

necessary to have an automatic way to tag and classify video contents. According to

YouTube statistics for 2017 [79], 300 hours of videos are uploaded to YouTube every

minute. In order to access these databases contents effectively. In addition, video indexing

was promoted by TREC Video Retrieval Evaluation as one of the tasks for the years 2010-

2015. Our goal is to develop an effective method to index and retrieve videos based on

scene features in order improve videos tagging and retrieval mechanisms.

1.3 Contribution

In this thesis, we present a method to classify and tag video contents based on their scene

features. This study focuses on combining various techniques of video segmentation,

feature extraction… etc, in order to achieve a highly accurate video indexing tool.

1.4 The Objectives of the Study

Automatic classification of video segments is a fundamental technology for video

categorization, searching, filtering and browsing. The objective of the study is to develop a

www.manaraa.com

4

method to automatically classify and retrieve videos using scene features which represents

the visual contents or multimodal concepts, to help multimedia database professionals to

effectively store and retrieve their videos in a way to guarantee the effective use of

available multimedia data.

www.manaraa.com

5

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

Video indexing is the process in which the video contents are analyzed in order to extract a

signature to characterize the video content uniqueness and is abstract enough to capture

useful similarities with other video contents. Research and development in the area of video

indexing falls under the domain of multimedia content analysis. [8]

Indexing a large group of images has become an interesting challenge for many

multimedia-related applications. There are currently several smartphone apps that allow

their users to take a photo and search a database of stored images (e.g. Snaptell, Barnes and

Noble and Google Goggles app). Databases vary in size, and they can conceivably reach

billions of images [8]. The ultimate goal is to identify the stored image containing the

objects in a query image. This kind of applications poses three main challenges: storage,

computational cost, and recognition performance [8]. For example if we consider a

database that contains a billion images, and stores 100KB per image, then we need to store

100 TB of data just for their features descriptions, and the task of searching for the nearest

set of features in a database of 100TB of features would take a lot of time. In this thesis, we

present an innovative approach to index videos based on their 2D features using KAZE [7].

The following two examples of research activities are particularly noteworthy, 1) Since

2001, the National Institute of Standards and Technology has been sponsoring the annual

Text Retrieval Conference (TREC) Video Retrieval Evaluation (TRECVid) to promote the

progress in video analysis and retrieval. Since 2003, TRECVid has been independent of

TREC. TRECVid provides a large-scale test collection of videos, and dozens of

www.manaraa.com

6

participants apply their content-based video retrieval algorithms to the collection [28-30].

2) The task to guarantee the video contents description is compatible which facilitates the

development of fast and accurate video retrieval algorithms. The main standards for videos

are the moving picture experts group (MPEG) and the TV-Anytime Standard [65].

There exist many investigations that adopt the MPEG-7 to extract features to classify video

contents or to describe video objects in the compressed domain [66]. Videos usually

contain a visual channel and an auditory channel. The available information from videos

includes the following: 1) video metadata, which are tagged texts embedded in videos,

usually including title, summary, date, actors, producer, broadcast duration, file size, video

format, copyright, etc.; 2) audio information from the auditory channel; 3) transcripts:

speech transcripts can be obtained by speech recognition and caption texts can be extracted

using optical character recognition techniques; 4) visual information contained in the

images themselves from the visual channel [67, 68]. If a video is embedded in a web page,

there are usually web page texts associated with such a video. In this proposal, we focus on

the visual contents of videos. The importance and the current focus on video indexing and

retrieval in the research community were the motives to many survey papers, together with

the publication years and topics [67].

Generally, each paper focuses on a subset of video indexing and retrieval topics. For

example, Smeaton et al. [29] give a good review of video shot boundary detection during a

seven years of the TRECVid activity. Snoek and Worring [69] present a detailed review of

concept-based video retrieval. They emphasize video search using semantic concepts, and

the evaluation of algorithms using TRECVid databases. Ren et al. [70] review the state of

the art of spatiotemporal semantic information-based video retrieval. Schoeffmann et al.

[71] give a good review of interfaces and applications of video browsing.

www.manaraa.com

7

In general, videos are organized in a hierarchy of video clips, scenes, shots, and frames. As

shown in figure (2). Video structure analysis aims at segmenting a video into a number of

structural elements that have semantic content including shot boundary detection, key

frame extraction and scene segmentation [34].

Figure 1: Video hierarchical structure and keyframe extraction, retrieved from [72]

2.2 Literature Review

Research in the recent years involved different approaches to help in the task of the

exploration of semantic knowledge among shots for video indexing [17, 18, 19]. Yang and

Hauptmann [31] used temporal consistency to sample informative examples to enhance

online-learning detector accuracy; Naphade et al. [5] used inter-concept relations and

temporal relationships to learn a probabilistic Bayesian network; QI et al. [19] used Gibbs

random fields to integrate conceptual correlation with video feature for semantic

annotation. Being successful in experiments with many concepts, these methods become

impractical for applications with a large number of concepts due to the complexity inherent

www.manaraa.com

8

in involving such relationships in the learning stage [1]. Moreover, these methods lack the

flexibility when it comes to continually increasing the sizes of the training corpora [1].

Early systems, such as Informedia [20] and MARVEL multimedia analysis engine [21],

proposed to combine the video modalities in order to enhance the video interpretation. The

semantic pathfinder [22] explored different paths through three consecutive analysis steps

which are: content analysis, style analysis, and context analysis. Other works focused on

including spatio-temporal information into visual content processing in order to detect

moving objects and events [23-25]. Some other alternatives have focused on using semantic

knowledge to enhance the accuracy of concept detection [26].

Multimedia information indexing and retrieval [26] are required to describe, store, and

organize multimedia information and to assist people in finding multimedia resources

conveniently and quickly. Video is an important form of multimedia information which

have the following characteristics: 1) much richer content than individual images; 2) huge

amount of raw data; and 3) very little prior structure [27]. These characteristics increase the

difficulty of indexing and retrieval of videos. In the past, video databases were relatively

small, indexing and retrieval have been based on keywords assigned manually [1]. More

recently, these databases have become much larger and content-based indexing and

retrieval is required, based on the automatic analysis of videos with the minimum of human

participation.

Content-based video indexing and retrieval have a wide range of applications such as quick

browsing of video folders, analysis of visual electronic commerce (such as analysis of

interest trends of users’ selections and orderings, analysis of correlations between

advertisements and their effects), remote instruction, digital museums, news event analysis

[27], intelligent management of web videos (useful video search and harmful video

www.manaraa.com

9

tracing), and video surveillance. This broad range of applications that motivates and ignite

the interests of researchers worldwide [27].

As we mentioned earlier, videos are organized in a hierarchy structure of video clips,

scenes, shots and frames. In the following we are going to discuss the various techniques

for video segmentation including: shot boundary detection, key frame extraction and scene

segmentation. Then we are going to discuss the video features including static key frame

features, object features and motion features. After that we are going to discuss the video

data mining and classification.

A. Shot Boundary Detection

A shot is a consecutive sequence of frames captured by a camera action that takes place

between start and stop operations, which mark the shot boundaries [33]. There are strong

content correlations among frames in a shot. Therefore, shots are considered to be the

fundamental units to organize the contents of video sequences and the primitives for higher

level semantic annotation and retrieval tasks. Generally, shot boundaries are classified as a

cut in which the transition between successive shots is abrupt and gradual transitions. Cut

detection is easier than gradual transition detection [33].

The research on shot boundary detection has a long history, and several surveys exist on

video shot boundary detection [34]. Methods for shot boundary detection usually starts

extracting visual features from each frame, then measure similarities between frames using

the extracted features, and finally, detecting shot boundaries between frames that are

dissimilar [34]. The main three steps in shot boundary detection are: feature extraction,

similarity measurement, and detection [34]. The features used for shot boundary detection

include color histogram or block color histogram, edge change ratio, motion vectors,

www.manaraa.com

10

together with more novel features such as scale invariant feature transform, corner points

[35], information saliency map, etc. Color histograms have a good degree of robustness

against small camera motions, but not against large camera motions, and they cannot

differentiate the shots within the same scene [35]. Edge features are more invariant to

illumination changes and motion than color histograms. Moreover, motion features can

effectively handle the influence of object and camera motion. However, edge features and

motion features as well as more complicated features cannot in general outperform the

simple color histograms [34].

The second step required for shot boundary detection is done using the extracted features.

Current similarity metrics for extracted feature vectors include the 1-norm cosine

dissimilarity, the Euclidean distance, the histogram intersection, and the chi-squared

similarity [36], as well as some novel similarity measures such as the earth mover’s

distance and mutual information [37].

 The similarity measures include pair-wise similarity measures that measure the similarities

between consecutive frames, and window similarity measures that measure similarities

between frames within a window. Window based similarity measures incorporate

contextual information to reduce the influence of local noises or disturbances, but they need

more computation than the pair-wise similarity measures [73].

Shot boundaries can be detected using the measured similarities between frames. Current

shot boundary detection approaches can be classified into threshold-based and statistical

learning-based [73].

After discussing the shot boundary detection, we are going to discuss the key frame

extraction techniques.

www.manaraa.com

11

B. Key Frame Extraction

Huge redundancies exist among the frames in the same shot due to the video nature and the

frame rate; therefore, certain frames are selected as key frames [38], to represent the shot

effectively. The extracted key frames supposed to contain as much important content of the

shot as possible and reduce the redundancy as much as possible. The features used for key

frame extraction include: colors (particularly the color histogram), edges, shapes, optical

flow. MPEG-7 motion descriptors such as temporal motion intensity and spatial

distribution of motion activity, MPEG discrete cosine coefficient and motion vectors,

camera activity, and features derived from image variations caused by camera motion [39].

Current approaches to extract key frames are classified into six categories: sequential

comparison-based, global comparison-based, reference frame-based, clustering based,

curve simplification-based and object/event-based [74].

In the following section we are going to discuss the scene segmentation techniques, which

is the last technique of video segmentation that we are going to discuss. Then we are going

to discuss the static key frame features, object features and motion features.

C. Scene Segmentation

Scene segmentation is also known as story unit segmentation. In general, a scene is an

action in a single location and continuous time which results in contiguous shots that are

coherent with a certain theme. Scenes have higher level semantics than shots. Scenes are

identified or segmented out by grouping successive shots with similar content into a

meaningful semantic unit. The grouping may be based on information from the audio track

in the video, texts, or images. According to shot representation, scene segmentation

www.manaraa.com

12

approaches can be classified into three categories: key frame-based, audio and visual

information integration-based and background-based [76].

Extracting video features according to the video structural analysis is the base of video

indexing and retrieval. Focusing on the visual features suitable for video indexing and

retrieval which mainly include features of key frames, objects, and motions.

After discussing the video segmentation technique, we are going to talk about video

features including the static features of key frames, object features and motion features.

D. Static Features of Key Frames

The key frames of a video characterize the video contents to some extent. Traditional image

retrieval techniques can be applied to key frames to achieve video retrieval. The static key

frame features useful for video indexing and retrieval are mainly classified as color-based,

texture-based, and shape-based [31].

1) Color-Based Features: color-based features include color histograms, color moments,

color correlograms, a mixture of Gaussian models, etc. According to [31], color-based

features are the most effective features for video indexing and retrieval. In particular, color

histogram and color moments are simple but efficient descriptors [31].

2) Texture-Based Features: Texture-based features are object surface-owned intrinsic

visual features that are independent of color or intensity and reflect homogenous

phenomena in images. They contain crucial information about the organization of object

surfaces, as well as their correlations with the surrounding environment. Texture features

include Tamura features, orientation features, simultaneous autoregressive models, wavelet

transformation-based texture features, co-occurrence matrices, etc [31]. Amer et al [31]

used a co-occurrence texture and Tamura features for the TRECVid-2003 video retrieval

www.manaraa.com

13

task.

3) Shape-Based Features: Shape-based features that describe object shapes in the image

can be extracted from object contours or regions. A common approach is to detect edges in

images and then use the image histogram to describe the distribution of the edges.

After mentioning the features of the key frames, in the next section we are going to discuss

the object features.

E. Object Features

Object features are the features of the object which include the dominant color, size,

texture, etc., of the image regions corresponding to the object shown in the video. These

features can be used to retrieve videos that contain similar objects [40]. As an example,

faces are unique and useful objects in many video retrieval systems. Sivic et al. [41]

constructed a person retrieval system that is able to retrieve a ranked list of shots containing

a particular person, given a query face in a shot. Le et al. [42] proposed a method to retrieve

faces in broadcast news videos by integrating temporal information into facial intensity

information. Texts in a video are extracted as one type of object to help understand video

contents. Current algorithms focus on identifying specific types of objects rather than

various objects in various scenes.

So far we have discussed the static features of key frames and object features, which are

features that can be extracted from a single frame and represents the frame. In the next

section we are going to discuss the motion features, which link multiple frames.

F. Motion Features

Motion is the primary feature used to distinguish dynamic videos from still images. Motion

information shows the content with some variations in time. Motion features are more of a

www.manaraa.com

14

semantic concept than static frames or object features. Video motion includes camera

motion which causes the motion in the background, and moving objects which causes the

motion of the foreground. Thus, motion-based features for video retrieval can be divided

into two categories: 1) camera-based and 2) object-based [43]. In camera-based features,

different camera motions, such as “zooming in or out,” “panning left or right,” and “tilting

up or down,” are measured and used for indexing purposes [43].

Video retrieval using only camera-based features has the limitation that they cannot

describe motions of key objects. Object-based motion features have attracted much more

interest in recent research work. Object-based motion features can be further classified into

statistics-based, trajectory-based, and objects’ spatial relationships-based [43].

Video data mining, classification, and annotation rely heavily on the analysis of video

structure and the features extraction. There are no boundaries between video data mining,

video classification, and video annotation. As an example, the concept of video

classification and the concept of video annotation are very similar. In this section, we

review the basic concepts and approaches for video data mining, classification, and

annotation. The annotation is the basis for the detection of video’s semantic concepts and

the construction of semantic indices for videos.

After discussing the video segmentation techniques and the video features, we are going to

discuss what are these techniques used for, which primarily are used in video data mining

and classification. In the next section we are discussing the video data mining and

classification.

G. Video Data Mining

The task of video data mining is to find structural patterns of video contents, behavior

www.manaraa.com

15

patterns of moving objects, content characteristics of a scene, event patterns, and their

associations, and other video semantic knowledge using the extracted features, in order to

achieve video intelligent applications, such as video retrieval. The choice of a strategy for

video data mining depends on the application. Current strategies include object mining,

special pattern detection, pattern discovery, video association mining, tendency mining and

preference mining [44].

H. Video Classification

The task of video classification is to find rules or knowledge from videos using extracted

features or mined results and then assign the videos into predefined categories. Video

classification is the key to increase video retrieval efficiency. The semantic gap between

extracted formative information, such as shape, color, and texture, and an observer’s

interpretation of this information, makes content-based video classification very difficult.

Video content includes semantic content and editing effects. Referring to [45], semantic

content classification can be performed on three levels: video genres, video events, and

objects in the video, where genres have rougher and wider detection range; and events and

objects have thinner and limited detection range. In the following paragraphs, we are going

to discuss edit effect classification, genre classification, event classification, and object

classification.

1) Edit Effect Classification: Editing effects depend on the ways for editing videos, such as

camera motion and the composition of scenes and shots. Editing effects are not a part of

video content, but they affect the meaning of the video content; therefore, they may be used

in video semantic classification. For instance, Ekin et al. [46] classified shots of soccer

videos into long, in-field medium, close-up, and out-of-field views using cinematic features

www.manaraa.com

16

and further detect events such as play, break, and replay.

2) Video Genre Classification: Video genre classification is the classification of videos into

different genres such as “movie,” “news,” “sports,” and “cartoon.” Approaches to classify

video genres can be classified into statistic-based, rule- or knowledge based, and machine

learning-based [45].

3) Event Classification: An event can be defined as any human noticeable occurrence that

has significance in video content representation. Each video can consist of a number of

events, and each event can consist of a number of sub-events. To determine the classes of

events in a video, is an important component of content-based video classification [45], and

it is connected with event detection in video data mining.

 4) Object Classification: Video object classification which is connected to object detection

in video data mining is conceptually the lowest grade of video classification. The most

common detected and classified object is the face [48]. Object detection often requires the

extraction of structural features of objects and classification of these features. Prior

knowledge about the video contents such as an object appearance is often used in the

process of object feature extraction and classification.

Non-semantic-based video query types include query by example, query by sketch, and

query by objects while semantic-based video query types include query by keywords and

query by language [48].

Once video indices are obtained, video retrieval can be performed. On receiving a query a

similarity measure method is used, based on the indices, to search for the candidate videos

in accordance with the query. In the following we are going to review the query types.

1) Query by Example: This method uses a given query image or video to extract its features

and retrieve similar videos by measuring the features similarity. Extracted features of the

www.manaraa.com

17

key frames are suitable for this method, as the key frames of the provided query can be

matched with the key frames of stored videos.

2) Query by Sketch: This method takes user drawn sketches as a query to represent the

video they are looking for. Features extracted from the sketches are compared against the

stored videos features. Hu et al. [52] proposed a method of query by sketch, where the

sketch trajectories are matched to trajectories extracted from videos.

3) Query by Objects: This method allows the user to provide an image of an object as a

query. Then, the system finds and returns all occurrences of the object in the video database

[53]. In contrast with query by example and query by sketch, the search results of query by

objects are not the videos, but the locations of the provided query object in the videos [53].

As an example, if we want to search for basketball related videos, we will provide an image

of a basketball as the query.

4) Query by Keywords: This query represents the user’s query by a set of keywords. Query

by keywords is the most direct and the simplest type of queries, and it represents the video

contents to some extent. Keywords can refer to video metadata, visual concepts, transcripts,

etc [53]. As an example, if we need to find a specific song, we can use the song name,

album name or the singer name as a query.

5) Query by Natural Language: It is the natural and direct way of making a query by

describing the video contents using keywords. Aytar et al. [54] used semantic word

similarity to retrieve the most relevant videos and rank them, given a search query specified

in the natural language. The most difficult part of a natural language interface is the parsing

of natural language and the acquisition of accurate semantics.

6) Combination-Based Query: This query combines different types of queries such as text-

based queries and video example-based queries. The combination-based query is adaptable

www.manaraa.com

18

to multi-model search. Kennedy et al. [55] developed a framework to automatically

discover useful query classes by clustering queries in a training set according to the

performance of various unimodal search methods.

Video similarity measures play an important role in content-based video retrieval. Video

similarity measurement methods can be classified into four; which are: feature matching,

text matching, ontology-based matching, and combination-based matching. The choice of

method depends on the query type.

After discussing the query type we are going to describe the similarity measures. Video

similarity measures play an important role in content based video retrieval. Methods to

measure similarity can be classified into feature matching, text matching, ontology based

matching, and combination-based matching.

1) Feature Matching: The most direct measure of similarity between two videos is the

average distance between the features of the corresponding frames [56]. Query by example

usually uses low-level feature matching to find relevant videos. However, video similarity

can be considered in different levels of resolution or granularity [57]. According to

different user’ demands, static features of key frames [58], object features [59], and motion

features [52] all can be used to measure video similarity.

2) Text Matching: Matching the name of each concept with query terms is the simplest way

of finding the videos that satisfy the query. Snoek et al. [61] normalize both the

descriptions of concepts and the query text and then compute the similarity between the

query text and the text descriptions of concepts by using a vector space model. Finally, the

concepts with the highest similarity are selected.

3) Ontology-Based Matching: This approach achieves similarity matching using the

ontology between semantic concepts or semantic relations between keywords. Query

www.manaraa.com

19

descriptions are enriched from knowledge sources, such as ontology of concepts or

keywords [54]. Aytar et. al [54] utilize semantic word similarity measures to measure the

similarity between text annotated videos and users queries. Videos are retrieved based on

their relevance to a user-defined text queries.

4) Combination-Based Matching: This approach learns the combination strategies from a

training collection to leverage semantic concepts, e.g., learning query-independent

combination models as presented in [31] and query-class-dependent combination models

[62, 63] proved to be useful for combination-based queries which adapts to multimodal

searches.

This chapter reviewed the technologies and methods used previously for the purposes of

video indexing and retrieval, in the next chapter we will discuss the methodology we used

to create our approach of videos indexing and retrieval, and how we used the various

techniques of frames extraction, features detection, minhashing, Jaccard similarity and LSH

to achieve the theses goals.

www.manaraa.com

20

CHAPTER 3

METHODOLOGY

3.1 Introduction

In this thesis, we provide a video indexing system based on KAZE extracted video features

[7]. We started by downloading the DB videos, then we extracted their videos frames as

single images. Afterward, we extracted the frames features using KAZE. Then we

calculated the minhashes for the features. Finally, we used LSH to classify the hashes into

buckets using the Jaccard similarity measure to measure the similarity between hashes.

After the LSH buckets were created, we used sample queries to test and validate our

approach.

To achieve this, we selected the first thirty concepts from Columbia University video

indexing dataset (FTP: dvmm06.cs.columbia.edu) that have enough number of videos to

train and to test our system as shown in Table 1. We downloaded the first thirty videos in

each concept with a total of 900 videos for training purposes, and we downloaded an extra

five videos per concept for testing purposes (totaling 150 videos).

Table 1: Selected concepts numbers and their associated objects.

Concept Number Concept Name Concept Number Concept Name

Concept 1 Frame Concept 16 Hip

Concept 2 Front Concept 17 Hobby

Concept 3 Fruit Concept 18 Home

Concept 4 Game Concept 19 Hop

Concept 5 Garden Concept 20 Horse

Concept 6 Garment Concept 21 House

Concept 7 Girl Concept 22 Ice

Concept 8 Glass Concept 23 Ingredient

Concept 9 Grand Concept 24 Instrument

www.manaraa.com

21

Concept 10 Green Concept 25 Japanese

Concept 11 Grill Concept 26 Jump

Concept 12 Groom Concept 27 Kid

Concept 13 Hair Concept 28 Kitchen

Concept 14 Hand Concept 29 Kitten

Concept 15 High Concept 30 Landscape

As shown in figure (2), we started our work by downloading and gathering the DB videos

and classifying them into concepts as mentioned in table 1.

Figure 2: Presented methodology flowchart

www.manaraa.com

22

Then we created a frames extraction application using the AForge.NET framework [10]

and extracted the videos frames, then we classified the frames into two groups, the first

group contains all the video frames while the second group contains four frames per

second. After that we created the features detection application using EMGU.CV

framework and calculated the features for the extracted frames of the DB videos and stored

the features in DB tables. Then, we created min hash functions and calculated the min-hash

values for the frames features and stored them in another DB table for comparison and

retrieval. After the min hashes were created, we applied LSH to create buckets and assign

DB hashes into buckets. Finally we used a query hashes for testing, the testing included two

phases, in the first phase we used a single frame hashes for testing purposes while in the

second phase we used four-frame hashes to obtain the results. We used queries from the

DB and others from the same concepts but were not included in the DB for both phases.

After describing our methodology in brief, in the following sections we are going to discuss

the details of KAZE features, frames extraction, features finder, and LSH.

3.2 KAZE

KAZE is a novel method used for features detection and description in nonlinear scale

spaces [7]. KAZE detects the features and represents them as a set of keypoints. To

compute the nonlinear scale space KAZE takes an approach similar to SIFT by discretizing

the scale space in logarithmic steps arranged in a series of O octaves and S sub-levels. A

difference worth mentioning that KAZE works without any down sampling for the octaves

as done in SIFT. Then, it converts the set of discrete scale levels in pixel units to time units

because nonlinear diffusion filtering is defined in time terms. In the case of the Gaussian

scale space, the convolution of an image with a Gaussian of standard deviation q is

www.manaraa.com

23

equivalent to filtering the image for some time. KAZE convolves the image with a

Gaussian kernel to reduce the noise then it computes the image gradient histogram and

obtains the contrast parameter in an automatic procedure. Then, given the contrast

parameter and the set of evolution times it is straightforward to build the nonlinear scale

space using the AOS schemes. [7]

For detecting the points of interest it computes the response of scale normalized

determinant of the hessian at multiple scale levels which includes the second order

horizontal, vertical and cross order derivatives. Then, it analyzes the detector response at

different scale levels and searching for maxima in scale and spatial location. The position

of the keypoint is estimated with sub-pixel accuracy. [11]

We described the KAZE features and how the extraction process is done, but we need to

extract the video images before we can extract those features. In the next section we are

going to describe the application we built to extract the frames and how the frames

extraction process is done.

3.3 Frames Extraction

After downloading the database videos we started the process of frames extraction, to

extract the frames we built an application using AForge.NET libraries. The frames extractor

connects to the video source file using a file reader and extracts the frames with the same

quality of the source video file without the need of pausing or residing to screen snapshots.

For our DB, the average frames per second for the videos were 24 and we chose to extract

four frames per second from each video. The frame extractor extracts four frames per

second from each video and stores them in a directory with the same name of the video file.

The extracted frames are stored in BMP format. Extracted frames are then classified into

www.manaraa.com

24

two groups, the first group contains all the extracted frames, and the second group contains

four frames per second. Since our database contains thirty concepts and thirty video for

each concept which makes it a total of 900 video files, and each video file length varies

from 30 seconds to 11 minutes, our database of videos generated approximately one million

frames.

When the frames extraction process is done, we can start with the features extraction

process. In the following section we are going to discuss the application we built to extract

the KAZE and ORB features.

3.4 Features Finder

The features finder application is the application we created using the EMGU.CV libraries

to detect KAZE and Orb features of the extracted frames. In our work, we have detected the

mentioned features for all the frames. To extract the KAZE features of a video, we select

the directory that contains the video frames and run the application, the features of each

frame are represented as a list of keypoints. The detected keypoints are composed of the

following:

- Key point Angle: computed orientation of the keypoint (-1 if not applicable); it's in

[0,360) degrees and measured relative to image coordinate system, ie in clockwise.

- Key point class ID: object class (if the keypoints need to be clustered by an object

they belong to)

- Key point octave: octave (pyramid layer) from which the keypoint has been

extracted

- Key point sub-pixel coordinates.

www.manaraa.com

25

- Key point response: the response by which the strongest keypoints have been

selected. Can be used for the further sorting or subsampling.

- Key point size: diameter of the meaningful keypoint neighborhood.

After detecting the features for each frame, we had around 50 keypoints with 6 values for

each keypoint and a number of frames that varies from 120 to 3200 frames per video; it

would be problematic and time consuming process to brute force the video comparisons

knowing that we have 36,000 to 960,000 different values for each video. To ease the

process of video comparisons we used LSH. In the following section we are going to

discuss the locality sensitive hashing and how we used it.

3.5 Locality Sensitive Hashing

Locality sensitive hashing is a hashing technique used to reduce the dimensionality of high-

dimensional data. LSH hashes input items and assign them into buckets in a way so that

similar items map to the same bucket. LSH differs from conventional cryptographic hash

functions as it aims to maximize the probability of similar items hashing into similar hash

values, which is known as collision [78]. In our work, we used minhashing to generate the

hashes which are going to be used by LSH. Minhash is a standard hashing technique for

discovering similar text documents or web pages [12]. Recently its variants have been

successfully applied to discovering near duplicate images [13, 14]. In the min-hash

algorithm a hash function is applied to all visual words in an image ignoring the location of

these visual words, and the visual word with the minimum hash value is selected as a global

descriptor of the given image. Min-hash is a hash function which maps a set I to some

value v. A hash function is applied to each visual word in the set I and the word that has

minimum hashed value is returned as the min-hash [15]. Assuming we have a set I of 100

www.manaraa.com

26

words and we want to reduce them into a vector v of 10 values, we will need to create 10

different hashing functions, then we use the first word of the set I as input to the hashing

functions, then we store the outcome of the hashing functions in the vector v. After we are

done with the first word, we repeat the same process for the second word, and compare the

outcome with the stored values in the vector v and keep the smaller value in the vector v.

Unlike text documents which are usually represented by a set of words, images are

characterized by their 2D structure. Objects within an image are often spatially localized in

the image and exists strong geometric constraints among the visual words in an object.

Figure 3: Examples of partial duplicate images [6].

Figure (3) shows some examples where the objects and the duplicate regions are localized

in the image.

Min-hash is a Locality Sensitive Hashing (LSH) scheme that approximates similarity

between sets. When an image is represented as a set of visual words, the similarity between

two images can be defined as the Jaccard similarity between the two corresponding sets of

visual words which is simply the ratio of the intersection to the union of the two sets.

The brute-force approach is to use the min-hash and Jaccard similarity measure and

www.manaraa.com

27

compare each hash in our DB with the query hash to find the most similar or the top 10

matches for the query hash, but doing this will consume a lot of time. Using Locality

sensitive hashing will reduce this time dramatically. LSH takes the Min-hash values and

hashes them into buckets so the similar hashes will hash into the same bucket. Buckets are

organized into bands, with a number of videos per band. Videos in the same bucket in a

band are then considered candidates for being similar. But before we use the LSH we need

to calculate the Min-hashes for the DB features.

To calculate the minhashes we retrieve the frames features from the DB and recreate the

keypoint structure to store the information, and then the hash functions are calculated once,

and then applied to all keypoints. In our implementation, Universal Hashing is used in the

Generate hash functions process. The generate hash functions process is passed the number

of bits to represent the universe size which is the number of distinct features expected

across all features. For each hash function two random numbers are used. The random

function is seeded with the same value to generate the same hash functions. After the hash

functions are generated the features are passed to the hash functions and every feature is

hashed into a value and stored in a hash vector and compared with the next feature hash

value while maintaining the minimum value as the hash value. In our work, we used 100

hash functions with a 4-byte integer for each value, but since our features are too long and

there are a lot of things to be hashed, we noticed that these values will always converge to

0. Therefore we modified the hashing function to restart from the max value whenever a

value reaches 0. Assuming we have a frame KAZE features of 48 points that we want to

hash, the hashing will start by generating the 100 hash function and assigning the hash

value of (2,147,483,647), which is the maximum value a 4-byte integer can hold; to 100 4-

byte integers. Then it will hash the first keypoint of the feature with the first hash function

www.manaraa.com

28

and compare the hashing result with the hash value vector; first integer and then it will

store the minimum value in the hash vector. After that, it will keep repeating this until the

first point is hashed with the 100 hash functions and compared to all 100 hash values

vector. Finally it will repeat the same thing for all the keypoints in the selected frame

features to be hashed.

After the min-hashes are calculated for the features in the DB, we used LSH to hash the

similar hashes into buckets. Moreover to detect similar hashes, we used the Jaccard

similarity measure [75].

The Jaccard similarity index can be used to represent similarity between two hashes. A

value of 1 means they are identical, 0 means they are completely dissimilar, where values

between 0 and 1 represent a degree of similarity. Jaccard index is defined as the size of the

intersection of the two hashes divided by the size of the union.

We have described our methodology in the previous section, and how we managed to

extract the frames, extract the frames features, Minhash the features, creating the LSH

buckets, and using the Jaccard similarity measure to retrieve the results. In the next chapter

we are going to discuss the implementation details of the applications we built for the

mentioned purposes, the used framework and tools, the input and output formats.

www.manaraa.com

29

CHAPTER 4

IMPLEMENTATION

In the previous chapter, we have discussed our methodology and how it works. In this

chapter we are moving forward towards the implementation details of the described

methodology. We are going to discuss the frameworks and tools used, the implementation

details of the applications we built, and the input and output formats.

4.1 Frameworks and Tools

AForge.NET is an open source C# framework designed for developers and researchers in

the fields of computer vision and artificial intelligence – image processing, neural

networks, genetic algorithms, fuzzy logic, machine learning, robotics, etc.[10]

AForge.NET libraries allow us to connect to video files and extract their frames with the

same quality without the need to play the video, and screenshot the required frames.

Through our work, we split the application into two apps as the AForge.NET framework

projects needs to be built for x64 processors while the EMGU.CV is an x32 processor. The

first is the frames extraction application which used AForge.NET, and the other one; the

features calculation application which uses the EMGU.CV framework.

EMGU.CV as mentioned in their website is a cross platform .Net wrapper to the OpenCV

image processing library. Allowing OpenCV functions to be called from .NET compatible

languages. The wrapper can be compiled by Visual Studio, Xamarin Studio and Unity. It

can run on Windows, Linux, Mac OS X, iOS, Android and Windows Phone. In our work,

we used EMGU.CV libraries to build the application to calculate the Orb and KAZE

features for the extracted frames. Having around one million frames extracted from the

www.manaraa.com

30

selected videos will result in another one million features vector which needs a lot of

storage space. MySQL is an open source rational database management system which

allows us to create our DB and store all the information needed without the need for a

license.

4.2 Implementation

In this chapter, we will describe the implementation of our work. The first thing we have

done was to download and arrange the DB videos into concepts.

After we finished the downloading and classification of the video files we started the

process of frames extraction. The average frame rate in the videos DB is 24 frames per

second. Then, we extracted four frames to represent each second of each video. Then we

classified the frames into two groups: the first group contains all the frames for each video,

while the second group contains four frames representing every second of each video.

Figure 4: Frame extraction application

Figure (4) shows the developed frame extraction application. The file menu contains two

options, the first option is “Select Files”, which opens an open file dialog box to select the

www.manaraa.com

31

concept directory we want to extract its frames. The selected directory is navigated and the

video files are counted by the application and the locations and names of the videos are

stored in a list. Then using the second option “Extract Frames”, the application starts by the

first video in the list and connects to the video using AForge.NET libraries and extract the

frames of the video. When the application starts extracting a video frames it searches for a

matching directory name and if does not exists it creates a directory with the same name in

the same location and starts saving the frames in that directory.

The disabled text boxes in the application, shows the name of the video file which is been

extracted, the current frame number, and the frame rate of the video.

Figure 5: Sample video frames, results of the frames extraction process.

Figure (5) shows a sample of a video frames after been extracted by the application, as we

can see in the figure the frames are named according to their respective number as they

appeared in the original video.

When the process of frames extraction was done we started the process of features

extraction, to do so we built the features extraction application.

www.manaraa.com

32

Figure 6: Features extraction application

Figure (6) shows the features extraction application. As we can see in the figure, the

“Selected Videos” text box shows the number of videos selected to extract their features.

While the “Remaining Videos” text box shows the number of remaining videos for the

extracting process. “Current Video” text box shows the name of the video that its features

are being extracted at the moment. “Selected Frames” text box shows the number of frames

that were extracted for the selected video. ”Remaining Frames” text box shows the number

of remaining frames of the selected videos that their frames features still need to be

extracted. The text box located on the right, is for the results showing when we are testing,

it shows the top 10 matches of the selected query and the concept of each one.

Figure 7: Features extractor file menu options

www.manaraa.com

33

Figure (7) shows the “File” menu of the features extractor application. The menu contains

six options which work as follows:

Select Folders: This option opens a “Select Folder Dialog” from which you can select a

single director or multiple directories, the selected directories are then searched for video

files and then added to a list to be processed.

Calculate Features: This option will go through the list of selected videos and select the

frames of videos, and then it will calculate the features as selected from the right check

boxes.

Hash Frames: Will calculate the minhashes of the selected videos frames and store them

into the DB.

Execute a query: Allows us to select a query for testing.

Load Hashes: Will load the minhashes from the DB into the application for LSH buckets

creation process.

Test Concept: Tests the query sample against the LSH buckets.

In our work we calculated the KAZE features for the DB videos.

www.manaraa.com

34

Figure 8: A feature list of keypoints and their structure

Figure (8) shows the detected SURF features of a sample frames, as we can see in the

figure the features are represented as a list of keypoints.

Figure 9: Keypoint structure and detected features for each keypoint

Figure (9) shows the structure of the keypoint which contains six values, to store the

keypoints in the DB we serialized the keypoints list into a string separated by “,” between

the keypoint values and “;” between each keypoint.

When we finished the features extraction of the DB videos, we moved to the minhashes

generating phase. In order to generate the minhashes we used Universal hashing [77] to

generate the hash functions which will be used to hash the features.

The hash functions are calculated once, and then applied to all DB features. In the used

implementation, Universal hashing is used in the GenerateHashFunctions method. This

www.manaraa.com

35

method is passed the number of bits to represent the universe size (u)- which is the number

of distinct features expected across all features. For each hash function two random

numbers are used. The random function is seeded with the same value to generate the same

hash functions. After the hash functions are generated the features are passed to the hash

functions and every feature is hashed into a value and stored in a hash vector and compared

with the next feature hash value while maintaining the minimum value as the hash value. In

our work, we used 100 hash functions with a 4-byte integer for each value. but since our

features are too long and there are a lot of things to be hashed we noticed that the values

will always converge to 0 so we modified the hashing function to restart from the max

value whenever a value reaches 0. Assuming we have frame KAZE features of 48 points

that we want to hash, the hashing will start by generating the 100 hash function and

assigning the hash value of 2,147,483,467 to 100 4-byte integers, which is the largest

number a 4-byte integer can hold. Then it will hash the first keypoint of the feature with the

first hash function and compare the hashing result with the hash value vector first integer.

And then store the minimum value in the hash vector, then it will keep repeating this until

the first point is hashed with the 100 hash functions and compared to all 100 hash value

vector. Finally, it will repeat the same thing for all the keypoints in the selected frame

features to be hashed.

After the minhashes has been calculated for all the frames, we started the LSH buckets

classification and creation process. In order to create the LSH buckets, we loaded the

hashes into our developed application and classified them into buckets that contain similar

hashes, the similarity measure we used to classify the hashes is the Jaccard similarity

coefficient [75].

Jaccard similarity coefficient is defined as the size of the intersection divided by the union

www.manaraa.com

36

of the two hashes. Jaccard values varies between 0 and 1, where a value of 0 means the

hashes are completely different and a value of 1 means the hashes are identical.

Considering a hash A and a hash B, the Jaccard similarity coefficient equation will look

like this: J = Intersection (A, B) / Union (a, B) [75]

After discussing the methodology and the implementation details, we will describe the tests

and the results of our work in the next chapter.

www.manaraa.com

37

CHAPTER 5

EXPERIMENTAL RESULTS AND DISCUSSION

In the previous chapter, we discussed the implementation details of the frames extractor and

the feature finder applications. In this chapter we are going to present and discuss the tests

and the results of our work. To test our results we used 10 queries to test each concept, the

queries came from videos hashed into the database, and videos from the same concepts but

not hashed into the database.

5.1 Introduction

Our experiments are divided into two stages: in the first stage, we used the hashes of single

frames to search for similar frames and videos search. In the second stage, we used the

hashes of four frames to represent one second of the video; and compare the hash of a

single second from the query with the hashes in the database, to retrieve the top ten matches

for the query. Our test includes queries of videos that have been hashed into the database

and other videos that belong to the same category but have not been hashed into the

database. As we mentioned before the database contains 30 concepts and 30 videos for each

concept which makes it a total of 900 videos. We used five videos that are already hashed

for each concept test and another five videos that have not been hashed to obtain our results

which make a total of 150 tests for in database videos and another 150 tests for out of the

database videos.

5.2 Single Frame Hash Experiments

In this stage, we started by loading the single frames hashes from the database and creating

the LSH buckets and then selecting a video which has already been hashed to the database.

www.manaraa.com

38

Table 2: Top 10 results, single frame queries for a video from the database.

Result KAZE

1st 100% Same video
2nd 100% Same video

3rd 67% Same video – 33% Same Concept

4th 88% Same Concept- 12% Same video

5th 100% Same Concept

6th 100% Same Concept

7th 100% Same Concept

8th 94% Same Concept – 6% Others

9th 83% Same Concept – 17% Others

10th 76% Same Concept- 34% Others

Table 2 shows the results of the experiments for single frame hashes on queries that had

been already hashed into the DB. The results show the results for the tests for each concept

where the top 10 matches are considered. As the table shows, our application successfully

identified the query video where the first two matches were pointing to the same video in

100% of the tests, and most of the top 10 matches belong to the same concept.

In the second test we used videos that belong to the same concept but were not hashed into

the database. Concepts such as concept17 and concept 20 (Hobby- Horse), concept16 and

concept19 (Hip-Hop), concept12 and concept13 (Groom- Hair), concept5 and concept10

(Green-Garden)…etc, May appear together in the same video but classified in a single

concept due to the main theme of the video.

Table 3: Top 10 results, single frame queries for a video belongs to the same concept but

not hashed in the database.

Result KAZE

1st 100% Same Concept

2nd 100% Same Concept
3rd 93% Same Concept –7% Others

4th 85% Same Concept – 15% Others

5th 76% Same Concept – 24% Others

6th 69% Same Concept – 31% Others

7th 61% Same Concept – 39% Others

8th 57% Same Concept – 43% Others

9th 52% Same Concept – 48% Others

10th 46% Same Concept- 54% Others

www.manaraa.com

39

In the second experiment, which is similar to the first one, we used videos that belong to

the same concept but not hashed into the database. As Table 3 shows that the first two

results were 100% of the same concept and the remaining top 10 most likely belong to the

same concept. Table 1shows the concept names and we can notice that many concepts may

appear in the same video, which leads to these results. The result depends on the selected

frame or hash as query, if the selected query shows a strong relation to a certain concept but

classified in another concept because of the whole video context such results should be

expected. As we know the concepts are classified as videos but after LSH is applied each

hash is assigned to a different bucket which may contain similar hashes from other videos

based on the dominant features in that single frame.

5.3 Four-Frame Hash Experiments

In this stage, we started by loading the four frames hashes from the database and creating

the LSH buckets and then selecting a query which has already been hashed to the database.

Table 4: Top 10 results, four-frames queries for a video hashed in the database.

Result KAZE

1st 100% Same video

2nd 100% Same video

3rd 73% Same video – 27% Same Concept

4th 55% Same Concept- 45% Same video

5th 92% Same Concept – 8% Same video

6th 100% Same Concept
7th 100% Same Concept

8th 88% Same Concept – 12% Others

9th 81% Same Concept – 19% Others

10th 77% Same Concept- 33% Others

Table 4 shows the results of the experiments for four-frame hashes on queries that had been

www.manaraa.com

40

already hashed into the DB. The results show the results for the tests for each concept

where the top 10 matches are considered. As the table shows, our application successfully

identified the query video where the first two matches were pointing to the same video in

100% of the tests, and the top 10 matches belong to the same concept in most of the tests.

In the second test we used videos that belong to the same concept but were not hashed into

the database.

Table 5: Top 10 results, four frames queries for a video belongs to a concept but not in the

database

Result KAZE

1st 100% Same Concept
2nd 100% Same Concept

3rd 100% Same Concept

4th 91% Same Concept – 9% Others

5th 86% Same Concept – 14% Others

6th 81% Same Concept – 19% Others

7th 77% Same Concept – 23% Others

8th 68% Same Concept – 32% Others

9th 59% Same Concept – 41% Others

10th 51% Same Concept- 49% Others

Table (5) shows the results of the experiments for four-frame hashes on queries that had

been already hashed into the DB. The results show the results for the tests for each concept

where the top 10 matches are considered. As the table shows that the application

successfully identified the first three matches from the same category in 100% of tests, and

the top 10 matches belongs to the same concept in most of the cases.

5.4 Single Frame Vs Four-Frame

As Table 6 shows, the results for Four-Frame in DB hashes has a better performance for the

first seven matches which is due to the fact that the four frames represent the video in a

better way than a single frame does.

www.manaraa.com

41

Table 6: Single frame VS four-frames KAZE, queries from the database.

Result Single Frame Four-Frame

1st 100% Same video 100% Same video
2nd 100% Same video 100% Same video

3rd 67% Same video – 33% Same

Concept

73% Same video – 27% Same Concept

4th 88% Same Concept- 12% Same

video

55% Same Concept- 45% Same video

5th 100% Same Concept 92% Same Concept – 8% Same video

6th 100% Same Concept 100% Same Concept

7th 100% Same Concept 100% Same Concept

8th 94% Same Concept – 6% Others 88% Same Concept – 12% Others

9th 83% Same Concept – 17% Others 81% Same Concept – 19% Others

10th 76% Same Concept- 34% Others 77% Same Concept- 33% Others

But for the last three results, the single frame has a slightly better performance which can

be explained by the regrouping process done by the LSH and assigning into buckets. The

regrouping process starts by creating buckets and assigning the similar hashes into the same

bucket, and as we described earlier; the database concepts have some similarities among

them, so it is possible to have a hash which belongs to concept17 video but assigned into a

concept 20 video. In the single frame case, it would be harder to be assigned into a different

bucket because consecutive frames in the same video are almost identical.

Table 7: Single frame VS four-frames KAZE, same concept queries but not in the database.

Result Single Frame Four-Frame

1st 100% Same Concept 100% Same Concept

2nd 100% Same Concept 100% Same Concept

3rd 93% Same Concept –7% Others 100% Same Concept

4th 85% Same Concept – 15% Others 91% Same Concept – 9% Others

5th 76% Same Concept – 24% Others 86% Same Concept – 14% Others

6th 69% Same Concept – 31% Others 81% Same Concept – 19% Others
7th 61% Same Concept – 39% Others 77% Same Concept – 23% Others

8th 57% Same Concept – 43% Others 68% Same Concept – 32% Others

9th 52% Same Concept – 48% Others 59% Same Concept – 41% Others

10th 46% Same Concept- 54% Others 51% Same Concept- 49% Others

As we can see in Table 7, the results for the Four-Frame were slightly better than the results

of the single frame for videos that have not been hashed into the DB, which is expected as

the Four-Frame represents the video better than the single frame and reduces the likelihood

of retrieving a video from a different concept than the main object in the hashed query.

www.manaraa.com

42

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

KAZE features has proved to be an effective descriptor to index and retrieve videos. In our

single frame and four-frame queries for in DB and not in DB tests, we found that the four-

frame sets representing video seconds achieve slightly better results in most of the cases.

Moreover, we noticed that the mismatching that we had in our results always points to

videos were the main object is presented but were not classified in the same concept. This

is the result of the fact that the concepts may appear in different videos that belong to

another concept which can be described by the intra-relation between the concepts.

Finally, we can say that our work correctly identified the query video for in DB hashes, and

correctly identified the query concept for videos not present in DB hashes in 100% of the

test cases in the top 2 matches.

6.2 Future Work

We intend to improve our work by trying to add different features to descriptive features

vector such, SURF, SIFT, FAST, ORB, Brief and Histogram. Adding such features may

prove helpful to improve our results. Therefore, we suggest the following as future work:

1- Create features vectors composed of different extracted from various features

extraction method to form vectors (e.g. SURF- KAZE, SIFT-KAZE) in order to

evaluate which combination will perform better for indexing tasks.

2- Modify the used hashing functions in the Min-Hash approach to produce a better

locality sensitive hashing for similar features vectors.

www.manaraa.com

43

REFERENCE

1. M.-F Weng and Y.-Y Chuang. "Multi-cue fusion for semantic video indexing." Proceedings of the 16th

ACM international conference on Multimedia. ACM, 2008.

2. R. Datta, J. Li, and J. Z. Wang. "Content-based image retrieval: approaches and trends of the new

age." Proceedings of the 7th ACM SIGMM international workshop on Multimedia information retrieval.

ACM, 2005.

3. D. H. Patel. “Content based Video Retrieval: A Survey.” International Journal of Computer applications

109.13 (2015): 1-5.

4. W. Hu, et al. "A survey on visual content-based video indexing and retrieval." IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews) 41.6 (2011): 797-819.

5. M. R. Naphade, I. V. Kozintsev, and T. S. Huang. "Factor graph framework for semantic video

indexing." IEEE Transactions on circuits and systems for video technology 12.1 (2002): 40-52.

6. D. C. Lee, Q. Ke, and M. Isard. "Partition min-hash for partial duplicate image discovery." European

Conference on Computer Vision. Springer Berlin Heidelberg, 2010.

7. P. F. Alcantarilla, A. Bartoli, and A.J. Davison. "KAZE features." Computer Vision–ECCV 2012 (2012):

 .214-227

8. M. Soleymani, et al. "Corpus development for affective video indexing." IEEE Transactions on

Multimedia 16.4 (2014): 1075-1089.

9. M. Aly, M. Munich, and P. Perona. "Indexing in large scale image collections: Scaling properties and

benchmark." Applications of Computer Vision (WACV), 2011 IEEE Workshop on. IEEE, 2011.

10. "Aforge.NET Framework". Aforgenet.com. N.p., 2017. Web. 11 Apr. 2017.

11. M. Brown, D. Lowe. "Invariant Features from Interest Point Groups." BMVC. Vol. 4. 2002.

12. A. Broder. "On the resemblance and containment of documents." Compression and Complexity of

www.manaraa.com

44

Sequences 1997. Proceedings. IEEE, 1997.

13. O. Chum, et al. "Scalable near identical image and shot detection." Proceedings of the 6th ACM

international conference on Image and video retrieval. ACM, 2007.

14. O. Chum, et al. "Near Duplicate Image Detection: min-Hash and tf-idf Weighting." BMVC. Vol. 810.

 .2008

15. P. Indyk, and R. Motwani. "Approximate nearest neighbors: towards removing the curse of

dimensionality." Proceedings of the thirtieth annual ACM symposium on Theory of computing. ACM,

 .1998

16. H. R. Naphide, and T. S. Huang. "A probabilistic framework for semantic video indexing, filtering, and

retrieval." IEEE Transactions on Multimedia 3.1 (2001): 141-151.

17. J. Yang, and A.G. Hauptmann. "Exploring temporal consistency for video analysis and retrieval."

Proceedings of the 8th ACM international workshop on Multimedia information retrieval. ACM, 2006.

18. M. Koskela, and A. F. Smeaton. "An empirical study of inter-concept similarities in multimedia

ontologies." Proceedings of the 6th ACM international conference on Image and video retrieval. ACM,

 .2007

19. G. J. Qi, et al. "Correlative multi-label video annotation." Proceedings of the 15th ACM international

conference on Multimedia. ACM, 2007.

20. A. Hauptmann, et al. Informedia at TRECVID 2003: Analyzing and searching broadcast news video.

Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 2004.

21. A. Natsev, et al. "IBM multimedia search and retrieval system." Proceedings of the 6th ACM

international conference on Image and video retrieval. ACM, 2007.

22. C. GM. Snoek, et al. "The semantic pathfinder: Using an authoring metaphor for generic multimedia

indexing." IEEE Transactions on Pattern Analysis and Machine Intelligence 28.10 (2006): 1678-1689.

www.manaraa.com

45

23. I. Laptev, et al. "Learning realistic human actions from movies." Computer Vision and Pattern

Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008.

24. L. Wang, et al. "Improving bag-of-visual-words model with spatial-temporal correlation for video

retrieval." Proceedings of the 21st ACM international conference on Information and knowledge

management. ACM, 2012.

25. M. Zampoglou, et al. "From low-level features to semantic classes: Spatial and temporal descriptors for

video indexing." Journal of Signal Processing Systems 61.1 (2010): 75-83.

26. M. S. Lew, et al. "Content-based multimedia information retrieval: State of the art and challenges." ACM

Transactions on Multimedia Computing, Communications, and Applications (TOMM) 2.1 (2006): 1-19.

27. Y. Peng, and C.-W. Ngo. "Hot event detection and summarization by graph modeling and matching."

International Conference on Image and Video Retrieval. Springer Berlin Heidelberg, 2005.

28. P. Over, et al. "TRECVID 2009-goals, tasks, data, evaluation mechanisms and metrics." (2010).

29. A. F. Smeaton, P. Over, and A. R. Doherty. "Video shot boundary detection: Seven years of TRECVid

activity." Computer Vision and Image Understanding 114.4 (2010): 411-418.

30. A. F. Smeaton, P. Over, and W. Kraaij. "High-level feature detection from video in TRECVid: a 5-year

retrospective of achievements." Multimedia content analysis. Springer US, 2009. 1-24.

31. A. Amir, et al. "IBM research TRECVID-2003 video retrieval system." NIST TRECVID-2003 (2003).

32. J. Fan, et al. "ClassView: hierarchical video shot classification, indexing, and accessing." IEEE

Transactions on Multimedia 6.1 (2004): 70-86.

33. C. Yeo, et al. "A framework for sub-window shot detection." Multimedia Modelling Conference, 2005.

MMM 2005. Proceedings of the 11th International. IEEE, 2005.

34. J. Yuan, et al. "A formal study of shot boundary detection." IEEE transactions on circuits and sy stems for

www.manaraa.com

46

video technology 17.2 (2007): 168-186.

35. X. Gao, J. Li, and Y. Shi. "A video shot boundary detection algorithm based on feature tracking." Rough

Sets and Knowledge Technology (2006): 651-658.

36. G. Camara-Chavez, et al. "Shot boundary detection by a hierarchical supervised approach." Systems,

Signals and Image Processing, 2007 and 6th EURASIP Conference focused on Speech and Image

Processing, Multimedia Communications and Services. 14th International Workshop on. IEEE, 2007.

37. L. Bai, et al. "Video shot boundary detection using petri-net." Machine Learning and Cybernetics, 2008

International Conference on. Vol. 5. IEEE, 2008.

38. K. W. Sze, K. M. Lam, and G. Qiu. "A new key frame representation for video segment retrieval." IEEE

transactions on circuits and systems for video technology 15.9 (2005): 1148-1155.

39. B. Fauvet, et al. "A geometrical key-frame selection method exploiting dominant motion estimation in

video." International Conference on Image and Video Retrieval. Springer Berlin Heidelberg, 2004.

40. R. Visser, N. Sebe, and E. Bakker. "Object recognition for video retrieval." International Conference on

Image and Video Retrieval. Springer Berlin Heidelberg, 2002.

41. J. Sivic, M. Everingham, and A. Zisserman. "Person spotting: video shot retrieval for face sets."

International Conference on Image and Video Retrieval. Springer Berlin Heidelberg, 2005.

42. D. D. Le, S. Satoh, and M. Houle. "Face retrieval in broadcasting news video by fusing temporal and

intensity information." International Conference on Image and Video Retrieval. Springer Berlin

Heidelberg, 2006.

43. M. S. Dao, F. G. B DeNatale, and A. Massa. "Video retrieval using video object-trajectory and edge

potential function." Intelligent Multimedia, Video and Speech Processing, 2004. Proceedings of 2004

International Symposium on. IEEE, 2004.

44. T. Mei, et al. "Modeling and mining of users' capture intention for home videos." IEEE transactions on

www.manaraa.com

47

multimedia 9.1 (2007): 66-77.

45. Y. Yuan, Research on video classification and retrieval. Diss. Ph. D. dissertation, School Electron. Inf.

Eng., Xi’an Jiaotong Univ., Xi’an, China, 2003.

46. A. Ekin, A. M. Tekalp, and R. Mehrotra. "Automatic soccer video analysis and summarization." IEEE

Transactions on Image processing 12.7 (2003): 796-807.

47. G. Lavee, E. Rivlin, and M. Rudzsky. "Understanding video events: A survey of methods for automatic

interpretation of semantic occurrences in video." IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews) 39.5 (2009): 489-504.

48. J. S. Boreczky, and L. D. Wilcox. "A hidden Markov model framework for video segmentation using

audio and image features." Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998

IEEE International Conference on. Vol. 6. IEEE, 1998.

49. L. Yang, et al. "Multi-modality web video categorization." Proceedings of the international workshop o n

Workshop on multimedia information retrieval. ACM, 2007.

50. Q. -J. Qi, et al. "Correlative multi-label video annotation." Proceedings of the 15th ACM international

conference on Multimedia. ACM, 2007.

51. L. Hollink, M. Worring, and A. T. Schreiber. "Building a visual ontology for video retrieval."

Proceedings of the 13th annual ACM international conference on Multimedia. ACM, 2005.

52. W. Hu, et al. "Semantic-based surveillance video retrieval." IEEE Transactions on image processing 16.4

 .1168-1181 :(2007)

53. J. Sivic, and A. Zisserman. "Video Google: Efficient visual search of videos." Toward category -level

object recognition. Springer Berlin Heidelberg, 2006. 127-144.

54. Y. Aytar, M. Shah, and J. Luo. "Utilizing semantic word similarity measures for video retrieval."

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008.

www.manaraa.com

48

55. L. S. Kennedy, A. P. Natsev, and S. F. Chang. "Automatic discovery of query-class-dependent models

for multimodal search." Proceedings of the 13th annual ACM international conference on Multimedia.

ACM, 2005.

56. P. Browne, and A. F. Smeaton. "Video retrieval using dialogue, keyframe similarity and video objects."

Image Processing, 2005. ICIP 2005. IEEE International Conference on. Vol. 3. IEEE, 2005.

57. R. Lienhart, "A system for effortless content annotation to unfold the semantics in videos." Proc. of the

IEEE Workshop on Content-based Access of Image and Video Libraries (CBAIVL'00). 2000.

58. Y. Wu, Y. Zhuang, and Y. Pan. "Content-based video similarity model." Proceedings of the eighth ACM

international conference on Multimedia. ACM, 2000.

59. A. Anjulan, and N. Canagarajah. "A unified framework for object retrieval and mining." IEEE

Transactions on Circuits and Systems for Video technology 19.1 (2009): 63-76.

60. W. Hu, et al. "Semantic-based surveillance video retrieval." IEEE Transactions on image processing 16.4

 .1168-1181 :(2007)

61. C. G. M. Snoek, et al. "Adding semantics to detectors for video retrieval." IEEE Transactions on

multimedia 9.5 (2007): 975-986.

62. R. Yan, J. Yang, and A. G. Hauptmann. "Learning query-class dependent weights in automatic video

retrieval." Proceedings of the 12th annual ACM international conference on Multimedia. ACM, 2004.

63. R. Yan, and A. G. Hauptmann. "A review of text and image retrieval approaches for broadcast news

video." Information Retrieval 10.4-5 (2007): 445-484.

64. S. Velusamy, et al. "SPSA based feature relevance estimation for video retrieval." Multimedia Signal

Processing, 2008 IEEE 10th Workshop on. IEEE, 2008.

65. F. Pereira, A. Vetro, and T. Sikora. "Multimedia retrieval and delivery: Essential metadata challenges and

standards." Proceedings of the IEEE 96.4 (2008): 721-744.

www.manaraa.com

49

66. R. V. Babu, and K. R. Ramakrishnan. "Compressed domain video retrieval using object and global

motion descriptors." Multimedia Tools and Applications 32.1 (2007): 93-113.

67. A. F. Smeaton, "Techniques used and open challenges to the analysis, indexing and retrieval of digital

video." Information Systems 32.4 (2007): 545-559.

68. Y. Y. Chung, et al. "Content-based video retrieval system using wavelet transform." WSEAS

Transactions on Circuits and Systems 6.2 (2007): 259-265.

69. C. G. M. Snoek, and M. Worring. "Concept-based video retrieval." Foundations and Trends in

Information Retrieval 2.4 (2008): 215-322.

70. W. Ren, et al. "State-of-the-art on spatio-temporal information-based video retrieval." Pattern

Recognition 42.2 (2009): 267-282.

71. K. Schoeffmann, et al. "Video browsing interfaces and applications: a review." Journal of Photonics for

Energy (2010): 018004-018004.

72. M. Wang and H-J Zhang. ”Video Content Structuring”, Available Online:

http://www.scholarpedia.org/article/Video_Content_Structuring .

73. M. Cooper, T. Liu, and E. Rieffel. "Video segmentation via temporal pattern classification." IEEE

transactions on multimedia 9.3 (2007): 610-618.

74. B. T. Truong, and S. Venkatesh. "Video abstraction: A systematic review and classification." ACM

transactions on multimedia computing, communications, and applications (TOMM) .3 :(2007) 3.1

75. N. Grattan, “Jaccard Similarity Index for Measuring Document Similarity”. Available Online :

https://nickgrattan.wordpress.com/2014/02/18/jaccard-similarity-index-for-measuring-document-

similarity/

76. R. Yan, and M. Naphade. "Semi-supervised cross feature learning for semantic concept detection in

videos." Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on. Vol. 1. IEEE, 2005.

77. N. Grattan. “MinHash for Document Fingerprinting in C#”. Available Online:

https://nickgrattan.wordpress.com/2014/02/23/minhash-for-document-fingerprinting-in-c/

78. A. Gionis, P. Indyk, and R. Motwani. "Similarity search in high dimensions via hashing." VLDB. Vol.

99. No. 6. 1999.

79. D. Donchev. “YouTube Statistics 2017”. Available Online: https://fortunelords.com/youtube-statistics/

http://www.scholarpedia.org/article/Video_Content_Structuring
https://nickgrattan.wordpress.com/2014/02/18/jaccard-similarity-index-for-measuring-document-similarity/
https://nickgrattan.wordpress.com/2014/02/18/jaccard-similarity-index-for-measuring-document-similarity/
https://nickgrattan.wordpress.com/2014/02/23/minhash-for-document-fingerprinting-in-c/
https://fortunelords.com/youtube-statistics/

www.manaraa.com

50

 الملخص

 .7102أتمتة صناعية, قسم هنذسة الحاسبات, جامعة اليرموك, -مازن الوادي, ماجستير هنذسة حاسوب

 .(. المشرف المساعذ: د. عبذالكريم التميميد. محمذ الجراح) المشرف الرئيسي:

 ػٍ انُاحجت يحخٕٚاثانٕسائطانًخؼذدة فٙ انكبٛشة انضٚادة أكذث انخٙسٓهجيٍنمذ الأخٛشة انخطٕساثانخكُٕنٕجٛت

الاسخخذاوانٕاسغانُطاقلأجٓضةإَشاءانًحخٕٖانًخُمهتٔٔجٕدانبُٗانخحخٛتانذاػًتانًُخششةفٙكميكاٌيًثهتفٙ

ٔ نفٓشست أحٕياحٛكٛت ٔ فؼانت أَظًت إنٗ انحاجت الاجخًاػٛت ٔانشبكاث انؼانٛت انسشػاث راث الإَخشَج شبكاث

 خشجاعانفٛذْٕٚاث.إس

فْٙ نفٓشست َظاو َمذو الأطشٔحت، إنٗيٛضاثيشاْذانفٛذٕٚانًسخخشجتباسخخذاوحمُٛتازِ اسخُادا KAZEنفٛذٕٚ

يٛضاث ْٙانخصائصانًًٛضةنًشٓذانفٛذٕٚاسخُاداإنٗسًاحّانبصشٚت.انفٛذٕٚيشاْذفٙٔصفيٛضاثانصٕس.

ػهٗانًٛضاثانًسخخشجت،فهمذاسخخذيُآَجانفٓشستٕاسخُاداانفٓشستٔاسخشجاعانفٛذٚءةآنٛتحشصاػهٗصٚادةكفا

 طشٚمت ػهٗ فٛٓاLSHانًبُٙ انخحكى نٛسٓم صغٛشة بٛاَاث بمطغ ٔحًثٛهٓا انًشٓذ يٛضاث حكثٛف ػهٗ نهؼًم

فٛذٕٚحابغنًج يمطغ بخًثٛمكم لًُا نمذ انفٛذٕٚ. يشاْذ نخحذٚذ بفاػهٛت ًٕػتانفٛذْٕٚاثانًسخخذيتانبانغٔاسخخذايٓا

)الإطاس099ػذدْا ٔاحذ انفٛذْٕٚاثبإطاس يٍ ثاَٛت كم الأٔنٗ انًجًٕػت حًثم انًٛضاث. يٍ بًجًٕػخٍٛ فٛذٕٚ

بأسبؼتإطاساثيخباػذةفًٛابُٛٓابانخسأ٘.حىاخخباسَظايُاانًمخشحيٍ ثاَٛت كم انثاَٛت انًجًٕػت ٔحًثم الأٔل(،

الاسخؼ جذٚذة.خلال فٛذٕٚ إنٗيشاْذ بالإضافت سابما، فٓشسخٓا حًج انخٙ انفٛذٕٚ يماطغ يٍ فٛذٕٚ يشاْذ ػٍ لاو

انفٛذٕٚانًخضٌانًشغٕبفّٛدائًايٍبٍٛ اسخشداد يٍ حٛثحًكُا َٓجُا ٔدلت الاخخباساثيذٖفؼانٛت َخائج ٔحظٓش

يفا َفس إنٗ حُخًٙ يًاثهت فٛذٕٚ يماطغ ٔاسخشجاع َخٛجخٍٛ، َخائجُاأل فٙبمٛت راثانصهت يفاْٛى أٔ انفٛذٕٚ ْٛى

ػُذانبحثػٍيماطغفٛذٕٚجذٚذة،حٛثحًكٍَظايُايٍاسخشداديماطغ ححمٛكَخائجيًاثهت حى لذ الأٔنٗ.ٔ انؼششة

 ٍٛيٍانُخائج.خاثُٔلانفٛذٕٚيٍيفاْٛىانفٛذٕٚراحّأٔيٍيفاْٛىرٔاثانصهتفٙأ

